Math 33A Worksheet 8

Exercise 1. True or false:

- (a) If A is orthogonal then it is invertible.
- (b) If A is symmetric it is invertible.
- (c) Let V be a subspace of \mathbb{R}^n with orthonormal basis $\{u_1, \ldots, u_m\}$, and let $\{v_1, \ldots, v_{n-m}\}$ be an orthonormal basis for V^{\perp} . Then $\{u_1, \ldots, u_m, v_1, \ldots, v_{n-m}\}$ is an orthonormal basis for \mathbb{R}^n .
- (d) The entries of an orthogonal matrix are all less than or equal to 1 in absolute value.
- (e) Let V be a subspace of \mathbb{R}^n and B the matrix for orthogonal projection onto V. Then $B^2 = B$.

(f) Let
$$\mathscr{B} = \{v_1, v_2, v_3\} = \left\{ \begin{bmatrix} 2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\3\\-1 \end{bmatrix} \right\}$$
 be an ordered basis for \mathbb{R}^3 . Then $\begin{bmatrix} 1\\-8\\3 \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$.

- (g) If v_1, \ldots, v_m is a basis of unit length vectors for a subspace V, there is an orthonormal basis of V containing the vectors v_1 and v_2 .
- (h) For all $v, w \in \mathbb{R}^n$, $\langle v, w \rangle^2 \leq ||v||^2 ||w||^2$ with equality if and only if v, w are perpendicular.

Exercise 2. Let

$$A = \begin{bmatrix} 2 & 3 & -1 & 0 \\ 2 & 1 & 1 & -4 \end{bmatrix}$$

- (a) Find an orthonormal basis $\mathscr{B} = \{u_1, u_2\}$ for ker A.
- (b) Using your basis from part (a), find the matrix B for orthogonal projection onto ker A.
- (c) Find $B_{\mathscr{B}}$.
- (d) (Challenge). Generalize your observation from part (c). Given an orthonormal basis $\mathscr{B} = \{u_1, \ldots, u_m\}$ for a subspace V, what is the matrix for orthogonal projection onto V in the basis \mathscr{B} ?

Exercise 3. Find the QR decomposition of the matrix

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

Exercise 4. Let $A = \begin{bmatrix} 3 & 2 & 2 & 1 \\ 0 & -1 & 2 & 1 \\ 1 & 4 & -6 & -3 \end{bmatrix}$, $V = \operatorname{im} A$.

- (a) Find the projection matrix B for proj_W , projection onto V.
- (b) Using *B*, determine whether $\begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} \in \text{im } A$ (since *B* is projection onto *V*, a vector *v* is in *V* if and only if $B \cdot v = v$).

(c) Find the least squares solution to $Ax = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$.